In 1979, the Army Corps of Engineers predicted that by 2014, Optima Lake, in the panhandle of Oklahoma, would have 600,000 visitors a year camping, fishing, boating, and swimming. Instead, the lake sat empty, a dry expanse of land about three miles long. Today, it is still abandoned.
The Optima Lake and Dam was originally intended to control flooding from Beaver Creek and the North Canadian River. After $45 million was spent on its construction, though, the lake never filled up, and it has never reached more than 5 percent of its capacity.
Ed Rossman, a planning branch chief for the Corps of Engineers’ Tulsa District, told a local NPR station in 2013 that the project had been led astray because planners used historical climate data to pick the spot where the dam would be built. That data was wrong by the time construction was completed, and the water no longer flowed there. “We know that the historic record may not be a good snapshot for the future,” Rossman said. |
In other parts of the world, the opposite problem has occurred. A flooding barrier put up in the 1990s in the Netherlands to protect Rotterdam will likely fail 25 years sooner than was predicted when it was first built in the 1990s. Replacing the barrier will cost around a billion euros, 10 million of which would be just the cost for taking it down.
The issue here, in its different guises, is one that engineers and city planners continue to face, and which reveals an inherent problem with how we've planned, designed, built, and made predictions around all of our infrastructure. At its core, this problem revolves around a concept called stationarity.
Stationarity is the idea that, statistically, the past can help you predict and plan for the future—that the variations in climate, water flow, temperature, and storm severity have remained and will remain stationary, or constant.
The issue here, in its different guises, is one that engineers and city planners continue to face, and which reveals an inherent problem with how we've planned, designed, built, and made predictions around all of our infrastructure. At its core, this problem revolves around a concept called stationarity.
Stationarity is the idea that, statistically, the past can help you predict and plan for the future—that the variations in climate, water flow, temperature, and storm severity have remained and will remain stationary, or constant.
Nearly all the infrastructure decisions with which we live have been made with the assumption of stationarity. Engineers make choices about stormwater drainage pipes based on past data of inches of rain. Bridge engineers design foundations that can withstand a certain intensity of water flow based on the severity a certain location has experienced in the past. Reservoirs are designed to hold water based on historical information about water flow, and the historical water needs of a community.
|
We need to undergo an ideological shift in how we think about infrastructure and how it interacts with the environment.
|
“Stationarity has been the foundational concept used in the design of water infrastructure for as long as knowledge of the past has been around,” said Chris Milly, a research hydrologist at the U.S. Geological Survey.
We need to undergo an ideological shift in how we think about infrastructure and how it interacts with the environment. And it's more than just water. Experts choose what materials to make power lines out of based on how hot it has been before in a given location; if the lines get too hot, they could sag or short circuit. Asphalt cracks at high temperatures, but you can design asphalt mixtures to withstand extreme heats; those mixture decisions are made based on past weather data. Train tracks, airport runways, power plants, sewage systems— they are all designed with the past climate in mind.
Yet the assumption of a stationarity world has not withstood the test of time, or of climate change. In 2019, the average temperature around the world was 1.7 degrees above the 20th century average; it was the second-warmest year ever to be measured. The planet's temperature has been increasing steadily and the five warmest years since 1880 have all taken place since 2015. The increase in global temperature is causing temperature and weather extremes that past climate data can't fully predict.
Experts say it means we need to undergo an ideological shift in how we think about infrastructure and how it interacts with the environment—discarding the notion that our history can dictate what we need in the future, and instead turn to more adaptable and flexible versions of infrastructure that embrace deep uncertainty.
We need to undergo an ideological shift in how we think about infrastructure and how it interacts with the environment. And it's more than just water. Experts choose what materials to make power lines out of based on how hot it has been before in a given location; if the lines get too hot, they could sag or short circuit. Asphalt cracks at high temperatures, but you can design asphalt mixtures to withstand extreme heats; those mixture decisions are made based on past weather data. Train tracks, airport runways, power plants, sewage systems— they are all designed with the past climate in mind.
Yet the assumption of a stationarity world has not withstood the test of time, or of climate change. In 2019, the average temperature around the world was 1.7 degrees above the 20th century average; it was the second-warmest year ever to be measured. The planet's temperature has been increasing steadily and the five warmest years since 1880 have all taken place since 2015. The increase in global temperature is causing temperature and weather extremes that past climate data can't fully predict.
Experts say it means we need to undergo an ideological shift in how we think about infrastructure and how it interacts with the environment—discarding the notion that our history can dictate what we need in the future, and instead turn to more adaptable and flexible versions of infrastructure that embrace deep uncertainty.
Over the past two decades, many hydrologists and engineers have raised the alarm about how a stationary approach isn't working anymore. In 2008, an international group of scientists (including Milly) announced in the journal Science that “stationarity is dead," and that it was time we accept we're living on a non-stationary planet.
|
A stationary approach isn't
working anymore. |
How did stationarity die? We’ve changed the planet so much with carbon emissions and other human activity that the past can no longer reliably determine what will happen in the future, or guide decisions about what kind of infrastructure we will need, what size it needs to be, what material it needs to be made of, what kind of climate it needs to be able to withstand.
“When people say stationarity is dead they’re saying something pretty straightforward, which is the past is no longer a good guide to the future,” said Giulio Boccaletti, the chief strategy officer and global ambassador of water at The Nature Conservancy. “That’s pretty momentous for a sector like water, which for the last century has essentially based its designs on statistics from the past, rather than being able to predict what is going to happen. Then the issue becomes, well, OK, so how different will it be?”
Non-stationarity means that we live in a world where there is no such thing as “normal,” where every new year comes rife with uncertainty and the threat of extremes we’ve never seen before. And “stationarity cannot be revived," the Science paper declared.
“When people say stationarity is dead they’re saying something pretty straightforward, which is the past is no longer a good guide to the future,” said Giulio Boccaletti, the chief strategy officer and global ambassador of water at The Nature Conservancy. “That’s pretty momentous for a sector like water, which for the last century has essentially based its designs on statistics from the past, rather than being able to predict what is going to happen. Then the issue becomes, well, OK, so how different will it be?”
Non-stationarity means that we live in a world where there is no such thing as “normal,” where every new year comes rife with uncertainty and the threat of extremes we’ve never seen before. And “stationarity cannot be revived," the Science paper declared.
Reprinted with permission. Read the original article. Check out the author on Twitter.